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Abstract

[t is demonstrated that the planar reorientation of
a free-free beam in zero gravity space call be ac-
complished by periodically chang'rag the shape of tile
beam using internal actuators. A control scheme is
proposed in which e[ectromechanical actuators excite
the flexible motion of the beam so that it rotates m
the desired manner with respect to a fixed inertial
reference. The results can be viewed as an _xtension
of previous work to a distributed parameter case,

1. Introduction

Following [8], we introduce the concept of a de-
formable body, for which distances between the points
of the body can change during the motion. Ex-
amples of deformable bodies include both lumped
anddistributed parameter systems such as muitilink
rigid body interconnections and structures with dis-
mbuted flexibility. The orientation of a deformable
body with respect to a fixed inertial reference can be
specified by a choice of body frame. In general, there
are many ways to choose a body frame. For exam-
pie, in the case of planar motion a body frame can be
identified with any two distinct points in the body.
The shape of a deformable body can be specified ill
terms of the position of the body relative to the body
frame. Thus, an arbitrary motion of a deformable
body can be separated into rigid body motion and
shape change.

Assume that both linear and angular momenta about
the center of mass of the body are conserved and
equal to zero. These conditions hold if the body is
in a circular orbit around the Earth or is in a free
fall. As a consequence of angular momentum conser-
vation, shape change and the rigid body motion are
coupled. This coupling is inherently nonlinear. In
particular, one may be interested in inducing a ro-
tation of a deformable body with respect to a fixed
inertial reference by periodically changing the shape
of the body with internal (momenta preserving) actu-
ators. Reorientation strategies for lumped parameter
mechanical systems have been extensively studied in
the literature [4, 5, 7, 8]. Reorientation schemes based
on the use of internal actuators require a minimal use
of fiwl to achieve the desired reorientation maneuver.
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In this paper we extend the aforementioned reorien-
ration strategies to the case of flexible bodies. In
particular, we are interested in a planar reoriontation
of a free-free beam in space using only electrome-
chanical actuators. These electromechanical actua-
tors, e.g. piezoelectric or shape memory actuators.
do not change the angular momentum of the free-
free beam but can be used to change the shape of the
beam in a periodic way. Assuming that the angular
momentum of the beam is always zero, oscillations
in the shape of the beam can cause a rotation of the
beam with respect to a fixed inertial reference. The
rotation of the beam over one period depends only on
the shape of the beam over one period and does not
depend on the length of the period; hence this phe-
nomenon is referred to as a geometric phase change.

The extension of existing strategies to the free-free
beam case is not straightforward for several reasons.
Classical models of uniform free-free flexible beams
in zero gravity space result in complete decoupling
of rigid body motion and flexible motion. Higher
order nonlinear coupling between rigid body motion
and flexible motion is captured in geometrically exact
beam theories [9]. The resulting models, however, are
complicated. The free-free beam is an infinite dimen-
sional superarticulated system. Thus, an arbitrary
shape change cannot be produced by a finite number
of actuators. In addition, the body frame of the beam
needs to be chosen so that the shape change is inde-
pendent of the rigid body motion. Such a choice ,:,f
body frame is natural for lumped parameter systems
since variables specifying orientation are ignolable

in this paper, we first address basic modeling i_-
sues. The dynamics which determine the shape ef
the free-free beam are assumed to be characterize,[
by the Euler-Bernoulli equation, including material
damping, with appropriate boundary conditions. The
higher order coupling between the rigid body motion
and the flexible motion is captured using the angular
momentum expression which includes rotatory iner-
tia and kinematically exact effects. A control scheme
is proposed in which the actuators excite the flexibl_
motion of the beam so that the beam rotates in the
desired sense.

2. A Planar Pree-Free Beam Model

Consider a uniform free-free beam of undeform_d
[ength "2L in space with zero angular momentum and
zero linear momentum. Referring to Fig. I the m,_-
tion of the beam is constrained to a plane defined t)?
vectors (et, _3) where (el,e2, e3) is an orthonorm;_l

basis for an inertial frame whose_o_rig_in is at the c_-
ter of mass of the beam. Let (i, j, k) be a rotat i11_,



framewith its originfixedatcheo_riginof theiner-
tial framesuchthatthevectors(i. k) lie in the plane
(#:, ,_3) and .7 = #2. The straight line passing through

the origin in the direction of vector k is called the
reference line. Let the beam initially be at rest in a
straight line configuration aligned w:th the reference
line. Then, the location of each point on the line of
mass centroids of the beam can be described in terms
of the parameter s G [-L,L]. This paratneter s,'an
be viewed as a label for each of the crossections. We
assume that as the beam deforms the shape and the
area of the crossections remain mvariant. Following
other researchers [1. 6, 9] we introduce three func-
tions u(s,t),y(s,t) : [-L.L] x :R --R and t{s.t) :
[-L,L] × _P,_ T' such that (u(s.t)+s._jls. tt) de-
fine the coordinates of the line of centroids in the
deformed_configuration with respect to the moving
frame (i,k) at time t. The angle _.'(._.tl between the
normal to the crossection at s and c_ specifies t!lo
orientation of the crossection. The normal to the
crossection at s is denoted by t3. We define the mate-
rim basis (/l,/2,/3) to be orthonormal so that [1 lies in
the plane (it, ca). The crossection itself can be asso-
ciated with the set of points ({1,,_) in a compact set

A C _2 such that {:it +_212-}-(U(S, t)'+S)_ A-(y{S, t))i

ives the location of any point on the beam as {1 and
vary through A and s varies from -L to L.

Since the origin of the inertial frame is fixed at the
center of mass of the beam we obtain

z y(s,t)ds = 0, (1)
L

L

f_ u(s, = (2)t)ds O.
g

Let p denote the constant mass density per unit vol-
ume of the beam. We assume that the beam has a
symmetric crossection so that the first moment of in-
ertia of the crossection about the line of centroids is

.f4 p_Ld_ld_2 = 0. (3)

The second ntoment _.,finertia of the crossection about
the line of centroids, referred to as the rotatory iner-
tia, is

12 = ja P_12d_td_a. (4)

and assumed to be positive. The mass per unit length
of the crossection is given by

= £ pd(:d_2. (5)m0

We define the angle 8(t) between e;3 and k" so that
9(s. t) measured from the reference line satisfies the
following orthogonality condition

t sv(s, t)ds = 0. (6)
L

The existence of the angle O(t) follows from the ge-
ometry indicated in Fig. 1. This definition provides a

separation between the motion which determines t}>
shape of the beam, given by y(s,t), -L < s < L. and
the rotation of the beam as a whole, given by 0Ill.

//),+,'

Fig l. Planar Beam Model

We next develop a kinematically exact expression for
the angular momentum of the free-free beam. Let
_.(s.(l,(,..O,t) be the vector from the origin of the
inertial frame to a point (s,(:,(2) on the beam at
time t; then

,5 = (ssinO + ycos0 +(t cos iV+ usin0)_l +

((_)_. +(scosO-(tsinW-ysinO+ucosO)_a (7)

where 0 = O(t),y = y(s,t) and tO = t0(s,t). The
angular momentum about the origin of the inertial
frame at time t is zero so that

L p_ x "_dE, ld_2ds = O. f")

Substituting equation (7) into equation (8) and using
equations (4) and (5) we can express 0 in terms ,,f
V. u and <', <as

.L , - o,,O + l:<,+ :v)
I'1}

f_L {-m0s_ - .,0v_ - 12}ds

where c_ = _, - 0 is the angle between the normal t:_
to the crossection at s and the reference line.

Assume that the beam is unshearable and inexten.-t-
ble and that the deformations are small. This impli,_s
using equation (2), that

u(s,t) = 0. l_,i

and that

cl_.ys. I:i

We use the Euler-Bernoulli beam model to chara,-
terize the shape of the beam [3]. Thus y(s,t) sati_fi--
the Euler-Bernoulli equation of the form

.2_,
rn0v,, +'tVt,,,, +EIv,,,, = - 2-, vj (t)6'(s-sj ) _LT,

j--I



with the boundary conditions .

v,,(-L) = v,,(L) = o, (13)

y,_,(-L) = y_,,(L) = O (14)

where I - I2/p, E is Young's elasticity modulus, 6' is
the distributional derivative of the delta function and

where for simplicity we assume Kelvin-Voigt damp-
ing with a positive damping coefficient 7. in addi-
tion, y(s,t) must satisfy conditions (1) and (6). In-
ternal bending torques v/(t), j = 1..... m are pro-
duced by m point actuators locat_-d at s = s, c_n the
beam where sj E f-L, L]. These actuators change the
shape of the beam but at the same time [)reserve the
angular momentum. Although such actuators are ca-
pable of inducing relatively small displacements one
can excite the beam periodically at a frequency near
one of the lower resonant frequencies of the beam to
obtain relatively large periodic shape chango.

Using expressions (6), (10) and (11) in equation (9)
we obtain

- fffL 17Y,, ds
= (13)

r + f_L m°y_'ds

where r = _moL a + 2I_L. This expression demon-
strates the nonlinear coupling between the beam's
shape and its rigid body motion, Expression (15) is
non-integrable in the sense that if y(s, t) is a periodic

function of time, the integral of 0 over one period is,
in general, non-zero.

We can expand the solution y(s,t) to equation (12)
in the series

,"X5

u(_, t) = y_ wds)qdt) (16)
i=l

where wi(s), i = 1,2 .... are the orthonormal elastic
mode shapes of the Euler-Bernoulli model. The solu-
tion y(s, t) satisfies equations (1) and (6), which can
be viewed as orthogonality conditions for the rigid
body modes and elastic modes. Expansion (16) pro-
vides the modal description

m

° ,i(t),i=0} + ciq + ¢ai'q = bq ...
j--.!

(17)

Equation (12), or equivalently equation (17), deter-
mines the shape of the beam and is called the shape
space equation. Substituting equation (16) into equa-
tion (15) we obtain

where J, = wi(L) - wi(-L). We note that (18) is,
in general, non-integrable for any truncation of the
infinite series in (16).

3. Asymptotic Reorientation Maneuvers

The goal is to accomplish asymptotic maneuvers, ie.

starting with O(to) = 8o, y(s. to) = y,(s,t_) = 0 we
want to rotate the beam so that O(t ) _ On. y( s.t ) _ t)
and y,(s, t) _ 0 as t _ ._ for some desired angle 0,_.

(.'onsider the periodic excitation of the beam at a sin-
gle frequency .o as

t'i(t)=vf +vf cos(wt),j-l,2 ..... rn (tg!

Since the shape space dynamics of the free-free beam
is asymptotically stable, the steady-state motion of
the beam is given by

q,(t) = l, + ai cos(wt + Oi) !2t))

where the parameters 11, ai and ¢i can be expressed in

terms of v_' anti t o according to equation (17). The
excitation function (19) should be sufficiently small
so that the Euler-Bernoulli model for the shape space
dynamics remains valid. Substituting equation (20)
into equation (18) and integrating over one period we
obtain the steady-state change in angle 0 over one
period is given by

_ cos(wt + yo)dt (21)
q0

1 + q (cos(_t + Yt) + ¢2 cos(2_t + )¢_)

for constants q0, q, ¢2, X0, Xt and X2. Expres-
sion (21) implies that, in general, the change in angle
0 in steady-state over one period is non-zero, thereby
proving that a periodic change in shape of the beam
results in a rotation of the beam. The steady-state

difference O( :_""5"-)- 9(0) is referred to as the geometric

phase. If ._i_1 q_ is small as compared with r, we
can approximate

r + _,=l q_ r r

and thus using equation (20) we obtain

-0( 2r_ ) _ 0(0) = _-_ aiJilja I sin(o., - o, )
i=l j=l,j#i

(2'e_
Although the geometric phase is generally non-zero,
there are cases when the geometric phase is zero.

Proposition 4.1 Assume that the steady-state m,u-
tion of the beam is described by equation (20). Then+
O(""_) - 0(0) -" 0 if any of the following conditi,+n.-
hold:

1. ai = O for all i

2. li-0foralli

3. O, = 0j for all i,j

The second statement of the proposition is the m,,sl
important. It implies that for a non-zero geometri,"
phase the beam should necessarily vibrate abo.r a



non-straightlinereferenceconfiguration.It follows
fromexpression(18)thatmordert,)rotatethebeam
in theoppositedirectionit issufficientto reversethe

_"and ,0signsof tj tj.

We are now in a position to formulate a specific con-
trol strategy to accomplish the desired asymptotic
maneuver. Starting at rest with OIt,_) = 0,_ applica-

tion of control law (19) results in a nonzero geometric
phase change over one period. By rep,_rlricm of cycles
of motion as many times as necessary rile I.,ean_ can
be caused to rotate closer and closer to t_t, .ks Oil)
approach 0a we can reduce the amplitude ,,f the ,_sctb
lations to zero in a way so that O(t) _ 01 as t -- -<

The proposed control law is of the f,,rm

= + '7 cos(.,t)] .j = 1 ,,

where _ < t- to < ._k.,p k = I '2... that

is, the con_'rol excitation is an_amplitude modulated
_0 _w

function, where v.7, uj are constants anti -_ ,lenotes
the scalar amplitude modulation sequence that de-
fines the control excitation on the k-th cycle. Each

cycle is exactly p periods. The constants ,'. 0_, /-,_"can
be chosen nearly arbitrary, although one approach is
to choose c,0 -tj, v'f to maximize geometric phase expres-

sion (22) where ai, li, Oi, i = 1..... are related to v],

t.j.j = 1 ..... m according to expressions (20) and
-0 -

(17), and v._, v)" are constrained in norm. In terms
of c,O -_j, v'f .j = 1..... m this is a constrained mathe-

matical programming problem which is linear in t_j0

(for fixed _)_) and quadratic in _)_ (for fixed f.o). We
will subsequently denote the maximum value of this
constrained optimization problem as _kO'.

The modulation sequence _+l is defined in terms of
an average of 0(t). over the k-th cycle, that is

1

O__ = _ (,nax0(t) + min0(t)) (24)

where the maximtlnl and mininlunl ,are over

21,l--ii'rp < t -- tl_ < _ We also introduce two

auxilarv variables 0_ _ = 80 and .% = sign t a0" J
_.It; eWe express "-'k in terms of 0__ t and ek- t as indicated

below:

(A1) ( 'ompute

r k =

(A2) In case [r_l >_ I-%-11, if rk and ¢_-I have
the same signs then _ = [.%_lisign(rk); if
r_ and e'k-1 have opposite signs then _ =
_t[_k-l[sign(rk). where 0 < "n < t.

(A3) If 0 < Irk[ < I'--_-al then __-_= ",,2r_, where
0<72<1.

(A4) If r_ = 0 then e_ = "&-t.

Proposition 4.2 [f the proposed control law ts

of the f(0rm (2:1) where _ is selected acc,ording t,,
_teps (A1)-(A4). then

lira O__'_ = Oe. lira _ = I).

Sketch of tile Proof. The sequence !sei _s t_,,n-
increasing and bounded on [0, l]. Therefor< thor, _
exists b _ i0, 1J such that b = inf_ i-%1. It ,:ttt I,_
.shown that by construction of the sequeno _ b mu.-t
I_e zero.

Since l-_l -- l) then qt(t) -- 0 and 'i, -- 0 as t -- x
By continuity O(t) _ 0_°'_ for some constant _J _ .t,
t -- _. It can be shown that Oc°n = 0,_.

Finally. it follows from equations (24) and 120/ that

t) )lim 8(t) =0_, lim =0,-L < s < L.- ,-_ _,=(s, t)

The controller which we have constructed has two
functions. Its main function is to excite the oscil-
lations of the beam in such a way that the beam
rotates in the desired sense. Subsequently, the con-
troller serves to suppress the vibrations previously ex-
cited so that the free-free beam comes to rest w]th a
desired orientation. Note that control law (23) is a
non-smooth feedback control law [2].

4. Numerical Example

Consider a beam with half-length L = tim]. den-
sity per unit volume p = 1400[kg/m a] and squat, _

crossection with the side size R = 0.1ira]. Youngs
modulus of the beam is E = 3.0 x lO_[N/rn '] a,>l
the Ketvin-Voigt damping coefficient is 7 = I).2. T_,,
actuators are installed near both ends of the IwTtt_
at ._ = -0.9[m] and s2 = 0.9[m]. The max,,,,d
t_rque each of the actuators can produce is o, tuai ',,
100[.Vm]. The excitation frequency w = 13[H:I i ....
lected to lie between the first 10.6[Ha] and the _,oc,_,_t_l

r,O add _'_29[H:] resonant frequencies of the beam; t._ _

j = 1.2 are chosen using expression (22) to maxinHz, _
the geometric phase chan_e over one period. For the,
example we choose p = o and 7_ = 7= = 0.9. [h,-
first four elastic modes of the beam are used in ,,,_r
simulation.

We want to rotate the beam from 00 = O.l[ra,l] :_
t = 0[sec] to 0a = 0[rad]. The dependence ,:,f r tw
angle O(t)[rad] on time t[sec] is shown for a part . t
the maneuver in Fig. 2. [n this case the geotm'tr_,
phase change over one period in steady-state t,r'--
dicted by expression (22) is equal to -2.7465 × 1,0- ;
[rad] whereas its actual simulation value is equal r :

-3.041l x 10 .4 lead]. The dependence of the m_,.;
ulation parameter _ on time is shown m Figur_ :',
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5. Conclusion

In this paper the angular momentum expression for a
planar free-free beam in space is derived. [t is shown
how the general motion of the beam can be separated
into rigid and elastic motions. The change of shape
of the beam is described by the EuLer-Bernoulli equa-
tion with free-free boundary conditions. Angular mo-
mentum conservation leads to the nonlinear depen-
dence of the rigid motion on the shape of the beam.
As shown this dependence is non-integrabie in the
sense that a periodic change [n shape of the beam
results in a non-zero rotation of the beam over one
period. Approximate relationships expressing the av-
erage rate of rotation of the beam in terms of the
amplitudes and phases of periodic excitation of the

beam by internal actuators are derived. Finally, a
control strategy for a planar asymptotic reorientation
maneuver is developed.

A general treatment of the interplay between defor-
mations and rotations of deformable bodies is given
by Shapere and Wilczek [8]. Reyhanogiu and Mc-
(:lamroch [7] have developed a framework for reorien-
tationofmultibodysystems in space• [n this paper,
we have used the framework developed by Shapere
and Wilczek for the specific problem of reor[entation
of a free-free beam in space: our results represent, in
a certain sense, the limiting case of the mu[tibody re-
suits obtained by Reyhanoglu and McClamroch when
the number of bodies increases without limit.

Although our study in this paper has been concerned
with the ideal case of reorientation of a free-free beam
in space, we note that the same ideas are applicable
to reorientation of a wide class of deformable space
structures, using only actuators embedded into the
structure. [n this sense, smart structures technology
can be used to accomplish a variety of efficient reori-
entation maneuvers for space structures.
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